المهندس
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

المهندس

كل مايتعلق بهندسة الميكانيك
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 اسئلة مع الحل Limits of Trigonometric Functions

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin



المساهمات : 93
تاريخ التسجيل : 21/09/2008

اسئلة مع الحل  Limits of Trigonometric Functions Empty
مُساهمةموضوع: اسئلة مع الحل Limits of Trigonometric Functions   اسئلة مع الحل  Limits of Trigonometric Functions Icon_minitime2008-09-26, 9:00 pm

Example 1: Find the limit limx® 0 (1 - cos x) / x


Solution to Example 1:

Let us multiply the numerator and denominator of (1 - cos x) / x by (1 + cos x) and write

limx® 0 (1 - cos x) / x

= limx® 0 [ (1 - cos x) / x ] *[ (1 + cos x) / (1 + cos x) ]

The numerator becomes 1 - cos 2 x = sin 2 x, hence

limx® 0 (1 - cos x) / x

= limx® 0 [ (sin 2 x) / x ] *[ 1/ (1 + cos x) ]

The limit can be written

limx® 0 (1 - cos x) / x

= limx® 0 [ (sin x) / x ] * limx® 0 [ sin x / (1 + cos x) ] = (1)(0/2) = 0

We have used the theorem: limx® 0 [ (sin x) / x ] = 1


Example 2: Find the limit limx® 0 sin 4 x / 4 x


Solution to Example 2:

Let t = 4x. When x approaches 0, t = 4x approaches 0, so that

limx® 0 sin 4 x / 4 x = limt® 0 sin t / t

We now use the theorem: limt® 0 sin t / t = 1 to find the limit

Find the limit limx® 0 sin 4 x / 4 x = limt® 0 sin t / t = 1


Example 3: Find the limit limx® 0 sin 6 x / 5 x


Solution to Example 3:

Let t = 6 x or x = t / 6. When x approaches 0, t = 6 x approaches 0, so that

limx® 0 sin 6 x / 5 x = limt® 0 sin t / (5 t / 6)

= limt® 0 (6 / 5) sin t / t

= (6 / 5) limt® 0 sin t / t

= (6 / 5) * 1 = 6 / 5


Example 4: Find the limit limx® -3 sin (x + 3) / (x 2 +7x + 12)


Solution to Example 4:

If we apply the theorem of the limit of the quotient of two functions, we will get the indeterminate form 0 / 0. We need to find another way. For x = -3, the denominator is equal to zero and therefore may be factorized, hence

limx® -3 sin (x + 3) / (x 2 +7x + 12)

= limx® -3 sin (x + 3) / (x + 3)(x + 4)

Let t = x + 3 or x = t - 3. As x approaches -3, t approaches 0.

limx® -3 sin (x + 3) / (x 2 +7x + 12)

= limx® -3 sin (x + 3) / (x + 3)(x + 4)

= limt® 0 sin t / [ t (t + 1) ]

We now apply the theorem of the limit of the product of two functions.

= limt® 0 sin t / t * limt® 0 1 / (t + 1)

= (1)*(1) = 1

Example 5: Find the limit limx® 0 sin | x | / x


Solution to Example 5:

We shall find the limit as x approaches 0 from the left and as x approaches 0 from the right. For x < 0, | x | = -x

limx® 0 - sin | x | / x

= limx® 0 - sin (- x ) / x

= - limx® 0 - sin ( x ) / x

= -1

For x > 0, | x | = x

limx® 0 + sin | x | / x

= limx® 0 + sin x / x

= 1

The two limits from the left and from the right are different, therefore the above limit does not exist.

limx® 0 sin | x | / x does not exist

Example 6: Find the limit limx® 0 x / tan x


Solution to Example 6:

We first use the trigonometric identity tan x = sin x / cos x

= -1

limx® 0 x / tan x

= limx® 0 x / (sin x / cos x)

= limx® 0 x cos x / sin x

= limx® 0 cos x / (sin x / x)

We now use the theorem of the limit of the quotient.

= [ limx® 0 cos x ] / [ limx® 0 sin x / x ] = 1 / 1 = 1

Example 7: Find the limit limx® 0 x csc x

Solution to Example 7:

We first use the trigonometric identity csc x = 1 / sin x

limx® 0 x / tan x

= limx® 0 x / (sin x / cos x)

= limx® 0 x cos x / sin x

= limx® 0 cos x / (sin x / x)

We now use the theorem of the limit of the quotient.

= [ limx® 0 cos x ] / [ limx® 0 sin x / x ] = 1 / 1 = 1


Exercises: Find the limits

1. limx® 0 (sin 3x / sin 8x)

2. limx® 0 tan 3x / x

3. limx® 0 sqrt(x) csc [ 4sqrt(x) ]

4. limx® 0 sin 3 3x / x sin(x 2)


Solutions to Above Exercises: Find the limits

1. 3 / 8

2. 3

3. 1 / 4

4. 27
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://houthaifa.mam9.com
 
اسئلة مع الحل Limits of Trigonometric Functions
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
المهندس :: القسم الهندسي :: مسائل وحلولها-
انتقل الى: