المهندس
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

المهندس

كل مايتعلق بهندسة الميكانيك
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 مسائل tangent lines in culculas

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin



المساهمات : 93
تاريخ التسجيل : 21/09/2008

مسائل tangent lines in culculas Empty
مُساهمةموضوع: مسائل tangent lines in culculas   مسائل tangent lines in culculas Icon_minitime2008-09-26, 8:50 pm

<table><tr vAlign=top><td vAlign=top>Problem 1: Find all points on the graph of y = x 3 - 3x where the tangent line is parallel to the x axis (or horizontal tangent line).

Solution to Problem 1:


  • Lines that are parallel to the x axis have slope = 0. The slope of a tangent line to the graph of y = x 3 - 3x is given by the first derivative y '.

    y ' = 3x 2 - 3
  • We now find all values of x for which y ' = 0.

    3x 2 - 3 = 0
  • Solve the above equation for x to obtain the solutions.

    x = -1 and x = 1
  • The above values of x are the x coordinates of the points where the tangent lines are parallel to the x axis. Find the y coordinates of these points using y = x 3 - 3x

    for x = -1 , y = 2

    for x = 1 , y = -2
  • The points at which the tangent lines are parallel to the x axis are: (-1,2) and (1,-2). See the graph of y = x3 - 3x below with the tangent lines.

    مسائل tangent lines in culculas Tangent_1






window.google_render_ad();

Problem 2: Find a and b so that the graph of y = ax3 + bx is tangent to the line y = -3x + 4 at x = 1.

Solution to Problem 2:


  • We need to determine two algebraic equations in order to find a and b. Since the point of tangency is on the graph of y = ax3 + bx and y = -3x + 4, at x = 1 we have

    a(1)3 + b(1) = -3(1) + 4
  • Simplify to write an equation in a and b

    a + b = 1
  • The slope of the tangent line is -3 which is also equal to the first derivative y ' of y = ax3 + bx at x = 1

    y ' = 3ax2 + x = -3 at x = 1.
  • The above gives a second equation in a and b

    3a + b = -3
  • Solve the system of equations a + b = 1 and 3a + b = -3 to find a and b

    a = -2 and b = 3.
  • See graphs of y = ax3 + bx, with a = -2 and b = 3, and y = -3x + 4 below.

    مسائل tangent lines in culculas Tangent_2


Problem 3: Find conditions on a and b so that the graph of y = ae x + bx has NO tangent line parallel to the x axis (horizontal tangent).

Solution to Problem 3:


  • The slope of a tangent line is given by the first derivative y ' of y = ae x + bx. Find y '

    y ' = ae x + b
  • To find the x coordinate of a point at which the tangent line to the graph of y is horizontal, solve y ' = 0 for x (slope of a horizontal line = 0)

    ae x + b = 0
  • Rewrite the above equation as follows

    e x = -b/a
  • The above equation has solutions for -a/b >0. Hence, the graph of y = ae x + bx has NO horizontal tangent line if -a/b <= 0


</TD></TR></TABLE>
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://houthaifa.mam9.com
 
مسائل tangent lines in culculas
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» مسائل S.F. & B.M digram

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
المهندس :: القسم الهندسي :: مسائل وحلولها-
انتقل الى: