المهندس
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

المهندس

كل مايتعلق بهندسة الميكانيك
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 centroid method of integration

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin



المساهمات : 93
تاريخ التسجيل : 21/09/2008

centroid method of integration Empty
مُساهمةموضوع: centroid method of integration   centroid method of integration Icon_minitime2008-09-26, 7:19 pm

Centroid -
Method of Integration - 1



centroid method of integration 1blue
Example Problem


<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid01</TD></TR>
<tr align=middle><td>Fig. 1</TD></TR></TABLE>
Use integration to locate the centroid of the shaded area shown in Fig. 1.
centroid method of integration Rline
Solution



The centroid of an area is the location at which the entire area could be concentrated and it would have the same "moment" as the sum of the "moments" of the individual pieces of area. This sum is called the first moment of area.


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn01</TD>
<td align=right width=25>(1)</TD></TR></TABLE>


Finding the Area


<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid02</TD></TR>
<tr align=middle><td>Fig. 2</TD></TR></TABLE>

To find the area, we first choose the small, horizontal element of area dA shown in Fig. 2. Approximating this area as a thin rectangle, the area is simply the product of the base times the height


<table cellSpacing=0 cellPadding=0 width=250 align=center border=0><tr vAlign=center align=middle><td>dA = w dy</TD>
<td align=right width=25>(2)</TD></TR></TABLE>
where w is the difference in the value of the x-coordinate at the right and left ends of the thin strip


<table cellSpacing=0 cellPadding=0 width=250 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn03</TD>
<td align=right width=25>(3)</TD></TR></TABLE>
(Note that the order in which we take the difference is important since the area and therefore w must be positive numbers.)

Then the area is


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn04</TD>
<td align=right width=25>(4)</TD></TR></TABLE>
which is about one-third the area of the bounding rectangle (4 × 8 = 32).
Finding the First Moment of Area - Mx



All of the horizontal strip of area in Fig. 2 is at the same y-coordinate. Therefore, the first moment of that little strip of area about the x-axis is just


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>dMx = y dA</TD>
<td align=right width=25> </TD></TR></TABLE>
Adding the moments of all such horizontal strips together gives


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn05</TD>
<td align=right width=25>(5)</TD></TR></TABLE>
The y-coordinate of the centroid is then


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn06</TD>
<td align=right width=25>(6)</TD></TR></TABLE>

Finding the First Moment of Area - My


<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid03</TD></TR>
<tr align=middle><td>Fig. 3</TD></TR></TABLE>

The horizontal strip of area in Fig. 2 is not all at the same x-coordinate, and it can not be used to calculate the first moment of that little strip about the y-axis


<table cellSpacing=0 cellPadding=0 width=250 align=center border=0><tr vAlign=center align=middle><td>dMy = x dA</TD>
<td align=right width=25> </TD></TR></TABLE>
Instead, we need to switch to a thin vertical strip of area as shown in Fig. 3. Again approximating the area as a thin rectangle, the area is simply the product of the height times the base


<table cellSpacing=0 cellPadding=0 width=250 align=center border=0><tr vAlign=center align=middle><td>dA = h dx</TD>
<td align=right width=25>(7)</TD></TR></TABLE>
where h is the difference in the value of the y-coordinate at the top and bottom ends of the thin strip


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn08</TD>
<td align=right width=25>(Cool</TD></TR></TABLE>
Adding the moments of all such vertical strips together gives


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn09</TD>
<td align=right width=25>(9)</TD></TR></TABLE>
and the x-coordinate of the centroid is then


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn10</TD>
<td align=right width=25>(10)</TD></TR></TABLE>


Sometimes the integrals obtained using one of the strips of area (say the vertical strip) are elementary, but the integrals obtained using the other strip of area (say the horizontal strip) are not elementary. In such cases, it would be nice to use the same strip of area (the vertical strip) for both calculations. This is the subject of the second example.

Centroid -
Method of Integration - 2



centroid method of integration 1blue
<table cellSpacing=0 cellPadding=5 width=600 align=center border=0><tr vAlign=top align=left><td bgColor=#4682b4> </TD>
<td>Example Problem


<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid11</TD></TR>
<tr align=middle><td>Fig. 4</TD></TR></TABLE>
Use integration to locate the centroid of the shaded area shown in Fig. 4. </TD></TR></TABLE>
centroid method of integration Rline
<table cellSpacing=0 cellPadding=5 width=600 align=center border=0><tr vAlign=top align=left><td bgColor=#4682b4> </TD>
<td>Solution


Finding the Area


<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid12</TD></TR>
<tr align=middle><td>Fig. 5</TD></TR></TABLE>

To find the area, we first try the small, horizontal element of area shown in Fig. 5. Again approximating this area as a thin rectangle, the area is the product of the base times the height


<table cellSpacing=0 cellPadding=0 width=200 align=center border=0><tr vAlign=center align=middle><td>dA = w dy</TD>
<td align=right width=25> </TD></TR></TABLE>
where w is the difference in the value of the x-coordinate at the right and left ends of the thin strip


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn11</TD>
<td align=right width=25>(11)</TD></TR></TABLE>
But the integral of cos-1y is not one that I remember, and I would like to try something else if it would work.
<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid13</TD></TR>
<tr align=middle><td>Fig. 6</TD></TR></TABLE>

Instead of the thin horizontal strip, we can use the thin vertical strip shown in Fig. 6. Again approximating the area of this strip as a thin rectangle the area is the product of the height times the base


<table cellSpacing=0 cellPadding=0 width=200 align=center border=0><tr vAlign=center align=middle><td>dA = h dx</TD>
<td align=right width=25> </TD></TR></TABLE>
where h is the difference in the value of the y-coordinate at the top and bottom ends of the thin strip


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn12</TD>
<td align=right width=25>(12)</TD></TR></TABLE>
Then the area is


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn13</TD>
<td align=right width=25>(13)</TD></TR></TABLE>
which is about two-thirds the area of the bounding rectangle (1 × centroid method of integration Pi/2).
Finding the First Moment of Area - My



All of the vertical strip of area in Fig. 6 is at the same x-coordinate. Therefore, the first moment of that little strip of area about the y-axis is just


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>dMy = x dA</TD>
<td align=right width=25> </TD></TR></TABLE>Adding the moments of all such vertical strips together gives


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn14</TD>
<td align=right width=25>(14)</TD></TR></TABLE>The x-coordinate of the centroid is then


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn15</TD>
<td align=right width=25>(15)</TD></TR></TABLE>

Finding the First Moment of Area - Mx



We really ought to use the thin horizontal strip of area in Fig. 5 since all of the horizontal strip is at the same distance from the x-axis. However, the integral obtained using this approach is not elementary


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn16</TD>
<td align=right width=25>(16)</TD></TR></TABLE>and I would again like to find some way to use the thin vertical strip of Fig. 6 instead.

The first moment of an area about
<table cellSpacing=0 cellPadding=5 align=right border=0><tr align=middle><td>centroid method of integration Centroid14</TD></TR>
<tr align=middle><td>Fig. 7</TD></TR></TABLE>the x-axis is defined as


<table cellSpacing=0 cellPadding=0 width=200 align=center border=0><tr vAlign=center align=middle><td>dMx = y dA</TD>
<td align=right width=25> </TD></TR></TABLE>
Although all of the vertical strip of Fig. 6 is not at the same distance from the x-axis, we can use the centroid concept to concentrate all of the area of the thin vertical strip at its own centroid centroid method of integration Ysubc = h /2 as shown in Fig. 7. Then the first moment of this concentrated element of area about the x-axis can be written


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn17</TD>
<td align=right width=25>(17)</TD></TR></TABLE>
Finally, adding the moments of all such vertical strips together gives
<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn18</TD>
<td align=right width=25>(18)</TD></TR></TABLE>
and the y-coordinate of the centroid is then


<table cellSpacing=0 cellPadding=0 width=550 align=center border=0><tr vAlign=center align=middle><td>centroid method of integration Eqn19</TD>
<td align=right width=25>(19)</TD></TR></TABLE>


</TD></TR></TABLE>
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://houthaifa.mam9.com
 
centroid method of integration
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
المهندس :: القسم الهندسي :: مواضيع هندسية عامة-
انتقل الى: