المهندس
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

المهندس

كل مايتعلق بهندسة الميكانيك
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 3-buckling of columns

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin



المساهمات : 93
تاريخ التسجيل : 21/09/2008

3-buckling of columns Empty
مُساهمةموضوع: 3-buckling of columns   3-buckling of columns Icon_minitime2008-09-23, 10:56 pm

Governing Equation for Elastic Buckling
3-buckling of columns Section_bar
Consider a buckled simply-supported column of length L under an external axial compression force F, as shown in the left schematic below. The transverse displacement of the buckled column is represented by w.
3-buckling of columns Column_SS 3-buckling of columns Column_SS_FBD

The right schematic shows the forces and moments acting on a cross-section in the buckled column. Moment equilibrium on the lower free body yields a solution for the internal bending moment M,
3-buckling of columns EquOfMotion1

Recall the relationship between the moment M and the transverse displacement w for an Euler-Bernoulli beam,
3-buckling of columns EquOfMotion1B

Eliminating M from the above two equations results in the governing equation for the buckled slender column,
3-buckling of columns EquOfMotion2
Buckling Solutions
3-buckling of columns Section_bar
The governing equation is a second order homogeneous ordinary differential equation with constant coefficients and can be solved by the method of characteristic equations. The solution is found to be,
3-buckling of columns EquOfMotion2_Sol

where 3-buckling of columns EquOfMotion2_m. The coefficients A and B can be determined by the two boundary conditions 3-buckling of columns EquOfMotion2_BC, which yields,
3-buckling of columns EquOfMotion2_SolB

The coefficient B is always zero, and for most values of m*L the coefficient A is required to be zero. However, for special cases of m*L, A can be nonzero and the column can be buckled. The restriction on m*L is also a restriction on the values for the loading F; these special values are mathematically called eigenvalues. All other values of F lead to trivial solutions (i.e. zero deformation).
3-buckling of columns EquOfMotion2_SolC

The lowest load that causes buckling is called critical load (n = 1).
3-buckling of columns Fcr

The above equation is usually called Euler's formula. Although Leonard Euler did publish the governing equation in 1744, J. L. Lagrange is considered the first to show that a non-trivial solution exists only when n is an integer. Thomas Young then suggested the critical load (n = 1) and pointed out the solution was valid when the column is slender in his 1807 book. The "slender" column idea was not quantitatively developed until A. Considère performed a series of 32 tests in 1889.
The shape function for the buckled shape w(x) is mathematically called an eigenfunction, and is given by,
3-buckling of columns Buck_col

Recall that this eigenfunction is strictly valid only for simply-supported columns.
<table cellSpacing=0 cellPadding=5 border=0><tr><td class=smalltext vAlign=baseline>Note:</TD>
<td class=smalltext vAlign=baseline>1.</TD>
<td class=smalltext>Boundary conditions other than simply-supported will result in different critical loads and mode shapes.</TD></TR>
<tr><td class=smalltext> </TD>
<td class=smalltext vAlign=baseline>2.</TD>
<td class=smalltext>The buckling mode shape is valid only for small deflections, where the material is still within its elastic limit.</TD></TR>
<tr><td class=smalltext> </TD>
<td class=smalltext vAlign=baseline>3.</TD>
<td class=smalltext>The critical load will cause buckling for slender, long columns. In contrast, failure will occur in short columns when the strength of material is exceeded. Between the long and short column limits, there is a region where buckling occurs after the stress exceeds the proportional limit but is still below the ultimate strength. These columns are classfied as intermediate and their failure is called inelastic buckling.</TD></TR>
<tr><td class=smalltext> </TD>
<td class=smalltext vAlign=baseline>4.</TD>
<td class=smalltext>Whether a column is short, intermediate, or long depends on its geometry as well as the stiffness and strength of its material. This concept is addressed in the columns introduction page.</TD></TR></TABLE>
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://houthaifa.mam9.com
 
3-buckling of columns
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» 1-buckling of columns
» 2-buckling of columns

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
المهندس :: القسم الهندسي :: مختبرات المرحلة الثانية-
انتقل الى: